Sl

Y Tt Pl T peamq peeed WM GEN G

[J —e
. L}

g
.

[ Y
. .

’.

- el T-: ! mﬂ. =t | u PHEON AN IO LU0 rdapemny - ot syt o -—m&mm

MAXIMIZING A SECOND-DEGREE POLYNOMIAL
ON THE UNIT SPHERE

BY
GEORGE E. FORSYTHE and GENE H. GOLUB

AD611427

0 A [ N 722
HARD 0¥ §. 2 o0
MICROFICHE $.0. 5™®

35’,/

TECHNICAL REPORT CS16
FEBRUARY 5, 1965

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sclences
STANFORD UNIVERSITY

PRETIVE EUL-U



-

T Ty pme ey emy e sy W =

-—

_1

i
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UNIT SPHERE :/

by
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and
Gene H. Golub

ABSTRACT

Let A be 3 hermitian matrix of order n, and b a known vector

in c".  The problem is to determine which vectors make ¢(x) = (x-b)H A(x-b)

a maximum or minimum on the unit sphere U ={x : x x = 1}, The problem
i3 reduced to the determination of a finite point set, the spectrum of

(A,b). The theory reduces to the usual theory of hermitian forms when b
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1. The problem.

Let A be a hermitiun square matrix of complex elements and order n.
Let b be a known n-vector of complex numbers. For each complex n-vector

X, the nonhomon~cneous quadratic expression
H
(1.1) ®(x) = (x-b) A(x-b)

(H denotes complex conjugate transpose) is a real number. The problem,
suggested to us by C. R. Rao of the Indian Statistical Institute, Calcutts,

is to maximize (or minimize) ¢(x) for complex x on the unit sphere

S = (x: xHx = 1}. Since ¢ 41is a continuous function on the compact set S,

such maxima and minima always exist.

In summary, our problem is:
(1.2) maximize or minimize &(x) subject to xHx =1

The purpose of this note is to reduce the problem (1.2) to the deter-
mination of a certain finite reul point set which we shall call the spectrum
of the system (A,b) (defined at end of Sec. 1), and show that a unique
number A 1in the spectrum determines the one or more x = xx which maximize
¢(x) for given b. Theorem (4.1) is the main result. The development is an
extension to general b of the familiar theory for the homogeneous case when
b = 6, the zero vector. No consideration to a practical zomputer algorithm
is given here.

In Sec. T we show that determining the least-squares solution of an

arbitrary system of linear equations Cy = f, subject to the quedratic



constraint yHy =1, 1is a special case of problem (1.2).

Phillips (9.2) and Twomey (9.3) begin the actual numerical solution
of certain integral equations by approximating tnem with algebraic problems
very closely related to the minimum problem (1.2).

Let A <Ay < vee <A be the (necessarily real) eigenvalues of A,

12 % 5

and let (u .,un} be a corresponding real orthonorma) set of eigenvectors,

l,oo
With Aui — Xi‘Ji (i=l,o-o’n)o

Let a given b be written
n
(1.3) b & Z; biui
i=

(1.4) Theorem. If x is any vector in S for which ®(x) 1is stationary

with respect to S, then there exists a real number A = AM(x) such that

Ax

1

(1.5) A(x-b)

(1.6) xlx

i
—

Conversely, if any real X\ and vector x satisfy (1.5, 1.6), then

x renders 9%(x) staticnary.

Proof. Let X be a point of S. Now, as shown in lemma (8.7),
%(x) 1s stationary at X with respect to x in S, 1if and only if there
exists a real Lagrange multiplier A such that y(x) = (x-b)HA(x-b) R
is stationary at X with respect to all neighboring complex vectors x.
Since

0 = 5 grad w();o) = A(xo-b) - A X,

~he theorem is proved.



o .

To see what conditions are satisfied by the A of theorem (1.4), we

note that the system (1.5, 1.6) is equivalent to the system

(1.7) (A-\I)x = Ab ,

(1.8) i o

Let

Then (1.7) is equivalent to

(1.9) ii (Xi-x)x u, = A,b,u

Definition. By the spectrum of the pair (A,b) we mean the set of all

real A for which there exists an x such that (1.7) and (1.8) are satisfied.
Given any A\, x satisfying (1.7) and (1.8), we shall say that x
belongs to A, and frequently write x 1in the form xx.

Note that the spectrum of (A,8) is the ordinary spectrum {\,} of

i

2. Special case: no xibi = 0.

Assume for the present section that xibi £0 (all 1i). This implies
that all Xi £0, i.e., that A 1is nonsingular. If X 1is in the spectrum

of (A,b), (1.9) implies that X §# \, for all 1, and also that



(2.1) X, = —=—= (=055 apn )| G

Then the requirement thut

(2.2) X x = 2; Ixi|2 = il
i=

is equivalent to the condition

2 <
n A, |b,]|
(23) g() = Z 1_15_.—.1.
i=1 ;xi-xl

Although all A corresponding to ctationary values of &(x) are
known by thzorem (1.4) to be real, it is useful to define g(\) by (2.3)

fcr all complex X not in [Xi].

Let G te the set of complex numbers X\ such that g(\) = 1.
n
Fer small encugh E: |bi|, G 1s the union of 1 simple closed curves in
i=1

thc complex plane, the k-th of which currounus A As the Io grow,

k' i|

adjacent curves first ccalesce in double points, and then merge into single

curves. For very large values of all |b G 1is one simple closed curve

A

including all A in its interior. The family of sets G resembles the
n
family of lemniscates | |X-X1| = const.

i=1

i)

Note, moreover, that g(A) > 1 for \ inside any component curve

GJ ¢f G, while ,(») <1 1in the exterior of all components GJ of G.

Now we shall show for the special case »f Sec. 2 that each A 1n

G determines a unique x* which satisfies 1.7, 1.8). For that y*



(2.4) o(x) = t(r) ,

where we define f by

n A, |b
(2.5) tx) = (2 Y 2=
i=1

Fix X, and drop the superscript X on x. To prove (2.4), note that

( = =
(1.7) says (Xi X)xi \,b,. Thus

(ki-X)(xi-bi) xibi = bi(xi-x)

"
>
o

Hence

x
[}
o
[y
1
>,I
-

and

2 2
5(x) = g, A -, |

1=1
2
n x |b, |
2 Wl
= |x z: 5
1=1 |xi-x]
= f(X) ’

proving (2.4).
Since the Lagrange multipliers A must be real. the spectrum of

(A,b) 1is the intersection of G with the real axis. This consists of from



2 to Z2n distinct real numbers. How many numbers are actually in the
spectrum depends on b; this will be discussed in Sec. 5 for n = 2.

We wish to determine which A 1in the spectrum corresponds to the
maximum [(minimum] value of f(A). Let GJ be any component curve of the set

I3
AV )

{7.6) Theorem. The meximum and minimum real parts of X, for A 1in any

one GJ, both occur for A on the real axis.

Proof. Let X\ =0 + it, with o0,t real. Then

L2
it |

i

A
2

> |

n
(A) = g (a,1) =
¢ I 125 (o

2
)
Heuce, for T >0 and fixed o, g(A) ctrictly decreases as T increases.
Then in the upper half plane T > O, any line o = constant intersects G

J

in exactly one point. The theorem follows from this.

Definition. Lewu AR[ALJ denote the unique real value of A of

raximum [minimum] real part in the set G.

(:.7) Theorem. Under the assumptions that A is regular (i.e., A #£0

for al) 1 ) and bifO(i=l,2,...,n), for all A in G such that

VEAL, AE A, we have

£(A) < £(r) < r(AR)

Proof. Let a, = G |b |2 (i=1,...,n). Introduce two independent

i

complex variables A,u, where u will later be set equal to X. In order

to study the gradients of the functions g, f, und h (defined below) for



complex A, we shall use the tools of Sec. 8. This requires extending

these functions into the space of A and ..

Let » =0 + it (u,T real). For all complex X\ # \,, define the

funct.nns 8y and 8, by

g(A) = g,(0,7) =g, (X)) ,

where
n a
p|

&0m) = B T

(This definition is consistent with (2.3).) Then

og og 3
) (3El +1 3?3) = [3;2 5 , by lemma (8.1)

n a

(2.8) =
1§1 ()‘1')‘)()‘1':)2

a

f:l :
- L 2 =
i= |xi-x| -(xi-x)

For all complex X\ # A» define f(X) by (2.5). We then define

the functions fl and f2 by

where



-

1
£,(0u) =M Y,
. 155 MOy )

Then
of of of
1 1l ‘
%(BU_+151)=[$2} = , by lemma (8.1)
n a n a
i - 1
= A + AN
125 xi]xi-xje an xi(xi-x)(xi-i)e
n a -
= A 1 > [1 =+ x_‘]
1=1 Ay g -n] Ay =
n a
=\ ; -
121 A AT Y)
ag2]
= k[-——- ; by (2.8)
Au oy
il T,
afq [dgé ]
/ < = .
(2.9) y]pzi A y u=x

While it is possible to use (2.9) to study the behavior of f(A) on
the set G where g(\) - 1 =0, 1t is more convenient here and in Sec.
3 to introduce a new function h(\), which agrees with f(A) on G. For

all complex X\ # A, define



bt -d

(2.10) h(x) = £(0) + M2 (1g(h))
and note that

(2.11) h{x) = £(\), for A €G

As with f and g, we introduce functions hl and h2 s0 that

h(X) = hl(U;T) = he(xyl-*) ’

wvhere
hy(hom) = £(0n) + 23 [1-gy(hn)]
Then
oh of d
ity &—2' = 5= + 31-g,(x,u)] --)‘—;E%z
N-y 98 .
= _§E v + %Ll-g2(X,u)] , by (2.9)
Hence 3
Jdh ch h
il 1 2
£(3(7_+15?_) =[&—]u=x, by(81)
(2.13) N
- )‘2;)‘ [5_2_ _ o+ (1-g, (0]



Now any component GJ of the set G where g(A) =1 encloses a

region where g(A) > 1. On G the gradient vector of g,

%, %8,
» W

is non-zeroc, is normal to G and points to the interior of G,. Then,

J’ J

by (2.12), the gradient vector of h on GJ’ namely

dh oh 3 d
=oimen(@ )

is non-zero for = f O and points along the tangent to GJ in the direction

of increasing o. Herce

h(A) 4is strictly increasing, as )\ traces GJ in

(2.14)

the direction of increasing o.

From (2.14) it follows that h(\A) assumes its maximum value, for each
separate camponent curve GJ of G, at the point BJ on GJ of maximum
real part. By theorem (2.6), Bj is on the axis of real A\.

Note that setting u = X =\ in (2.12) yields the result that
(2.15) h*'(A) =1 - g(A), for real A .

To complete the proof of the present theorem, we much show that f(\)

is larger at the point «a, of ieast real part on the component G, of G

J J

10
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than it is at the right-most point Bj-l of the component GJ-l of G

immediately to the left of GJ.
Note that g 1s continuous for \ € [Bj-l’aj]’ and that

S(ﬁj_l) = S\GJ) =1 but g(A) <1 for Bj-l <\ < aJ. Then

_ . J
h(aJ) = h(BJ_l) . h'(\)dx
J-1
%
- (B, ) fe -1, by (2.15)
J-1
> h(BJ-l)’ since g(2) <1
Thus
(2.16) n(e,_,) <nlay) ,

as was to be proved.

We conclude that h(A) increases, as A\ increases along the real

axis between adjacent components of G. Since h(A) = f(A) on G,

see from (2.14) and (2.16) that

f()‘) = f( ) ’
A co r

min f(\)
A €G

1

o]

—
8

DE



It follows trivially from theorem (2.7) that the maximum and minimum
values of f(A) over tne real numbers in G (i.e., over the spectrum of
(A,b) 1in the present case) are also f(/\R) and f(AL), respectively.

By (1.9), our condition that no \,b, = 0 implies that X\ # A, for
all 1 and for all A in G. Hence A.L and /\R are not eigenvalues of

A, and so neither A - ALI nor A - /HRI is a singular matrix. Therefore

. ] fo ;
we can solve equation (1.7) uniquely for X, 8nd X o
X = x"\R = (A- I)-lAb
max AR !
A
=xL = (a-a 1)t
X in = % (A /\.LI) Ab

These equations give unique solutions to the problem of minimizing and
maximizing ®(x) = (x-b )HA(x-b), for nonsingular A and b such that
no bi = 0.

It would be desirable to be able to prove that h(a1) < h(BJ), in

the notation of theorem (2.7), without analyzing h(A) and g(\) for complex

values of \.

3. General case: Some )‘ibi = 0.
We now study the general cese where one or more xibi = 0. To be

explicit, let C e )saba - 0), a set of imegers. We wish to examine

the spectrum of (A,b).

Define z as the set {)\a: a ¢ C}.



First, given one a € (T, if X\ # A, a&nd A 1is in the spectrum
of (A,b) with corresponding vector xx, then (1.9) shcws that ﬁ; = 0.
Thus, it X 1s in the spectrum but not in the set clf, then N; =0
for all a € Cf and, Just as in the derivation of (2.3), A will satisfy

the equation

2 2
n A, |*,]|

(3.1) Y —1—1—2—=1
1=l [ A

Conversely, any real solution X of (3.1) which is rot in the set Jf
will be in the spectrum of (A,b), and its corresponding vector xx will

have ﬁ; =0 forall a € C. 1If ve interpret 0/0 4in (3.1) as O,

then it is possible that some eigenvalue \  in dc will also satisfy (3.1).

If so, we will show that this Xk is also in the spectrum of (A,b). How-

ever, the spectrum may also contain eigenvalues Xk in atj which do not

satisfy (3.1), ac we shall now show. Nc eigenvalue Xk not in Jf can

be in the spec.rum, because A =\, would make the left side of (3.1)

equal to o .
Fix attention on one Xk for k ¢ C?. We wish to examine the

possibility that this A is in the spectrum of (A,b). Let m be the

miliviplicity of Xk as an ecigenvalue of A. Let ‘9k = (4: A, =\

that card (A)k) =m. If X\ 1s in the spectrum, then (1.9) shows that

k

Xaqa = v for all a in lgk. Morenver, if Xk is in the spectrum, then

A
the correcponding vector x = x kK has the properties

XL = —E——%— (1 £ lgk) R

13



and, by (2.1), also

)‘2 lb 12
(82 ) % l2 S
1fR9, = LEB P T

Conversely, if (3.2) holds then we can always define x, for all

i
ce B

K in such a way that

2
Ay byl

(3.3) z |x |2 =1 - ==
! 1 €8, |xi-xk|2

Hence, by (3.2) and (3.3), equation (1.8) holds and, since (1.7) is

satisfied, X, 1s in the spectrum of (A,b).

k
If equality holds in (3.2) then x, must be O for all 1 € Qk;
A
i.e., A  satisfies (3.1), and x 2 is unique. But if inequality <
holds in (3.2), then there is an (m-1)-dimensional sphere 1/ of values
0

of {xi), for 1 € ~N which satisfy {3.3). For, if a point

k)

(xi yee Xy ) is in U/, then so are all points of form
1 m

i()l 19m
(xi T T ) (all Gi real) |,

1 m

since E

| x 12 is constant for all of these. In this case
e Sk i

A
uniqueness of x f is lost. The sphere is analogous to (ir fact is a

generalization of ) the sphere of unit ~igenvectors of a hermitian matrix

A belonging to an eigenvalue of multiplicity m.

14



L _aual

Note that an inequality < in (3.2) states that X\

exterior of the graph

i.es, A can be joined to

k

the spectrum of (A,b)

(3.4) G={x

by an arc not cutting G.

K is in the

2l
SN }
-
Y
o s

Thus, in brief,

consists of the union of all real numbers in the set

2 2
M ey
i 12 1} ,
Iki-XI

where we interpret O/O as 0O, with those numbers Xk which are exterior
to the graph G. (If G dis the null set, then b = 6 and the spectrum
of (A,9) consists of all eigenvalues Xk-)

We must now examine ®(xx) for A in the spectrum of (A,b). The
study of ®(xk), for real X € G in (3.4) is the same as in Sec. 2,
and yields the same results (2.4) and (2.5): First, for A € G,

A 2 & )\ilbilg

O(x") = £(N) = |A] , where 0/0 = 0. Second, let MR

121 |h, -n )@
1

F‘L

[resp. f(pL) minimizes] f(\) for
A

o (x k), for eigenvalues A outside

k

be the right-most [resp. left-most] points of G. Then f(uR) maximizes

A € G. It remains to consider

G.

15
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(3.5) Theorem. For any A in the spectrum of (A,b) we have

(3.6) o(x7) = h(X) = £(x) + M[1-g(N\)] ,

where f(A) is given by (2.5), with 0/O intepreted as O.

Proof. Take any A in the spectrum of (A,b).

If ) ¢# M (k=1,...,n), then X € G, and everything proceeds as

in the proof of (2.4), showing that O(xk) f(A). Since g(A) =1, we

have provel (3.6) when X\ £ M-

If N = kk, an eigenvalue of A, let X4 der.ote the 1-th coordinate
A

of any x K Uhich satisfies (1.5) and (1.6) (and hence (3.2) and (3.3)).

Since A 1is in the spectrum of (A,b), we have \;by = 0 for all

i € 0}(’ where 91, is defined above after (3.1), and as

2 2 2
xilxi-bil = Ay |2y | =Xk|xi| , for all i € Sk. Then, by (3.3),

2
I
2 g4
B Mox-b [T = |1 - _
A NCR i il k 2
i€ Qk 1 £ 8, (h-n)
(3.7)
no Ay lbil2
=x |1 - 2: , where 0/0 =0
k L 2
L 6=t (xi-xk)

Moreo.er, like (2.4) we can prove

16
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Ef "1"‘1"’1'2 2 "i L ——— 5
{ (3.8)
2
n A, |b |
= Xi —1——4£7§ , where 0f0 =0
=1 (A -n)
Adding (3.7) to (3.8), we get
n
A 2
o(x") = Y A, |x,-b,]
& 1M
2 2
(3.9 =x2§)‘ilbil+x l_""i"’i'
k i1 (xi-xk)z S 1=1 (xi-xk)2

This proves (3.6) when \ =

It 1s property (3.6) of h

Note.

i o .t -

the spectrum of (A,b),

(3.10) n(x) = n + A

It i8 easily shown from (3.6) or (3.9) that, for all A

If A 1is in the spectrum of (A,b),

we can derive (3.10) as follows.

£(h ) + A [1-g(x, )]

h(xk) .

Xk.

which motivated our use of h 1in Sec. 2.

in

2
n A, |b,]|
I %5— ., where 0/0 = 0 .
{=1 1

but is not an eigenvalue of A,

Let x Dbelong to A. Then

17



o(x) = (x-b)"A(x-b)
H
= (x-b)"Ax , by (1.5)
= A xHx - A be
_ H
=X -Abx , by (1.6)
= = A bH(A-XI)-lAb , by (1.7)
e Bl
=1 MH

We shall not make use of (3.10) here.

We now use formula (3.6) to extend the doma.n of h to all real X\
where g(\) <e, 1i.e., to all A except where, for some 1, X\ = A
and A b, # 0.

As stated before (3.5), we know that the largest value of Q(XX) = h()\)
fer A in G occurs at the right-most point MR of G. It remains to
see whether h(kk) may be still larger for any Xk in the cpectrum of
(A,8), 1f up <.

The answer is furnished by formula (2.15), which is valid for the
general case of Sec. 3 with the understanding that 0/0 = O. Thus h is
increasing on all segments of the real axis between or exterior to components
of the curve G. It follows that h(A) takes its maximum at the rightmost
point AR of the spectrum of (A,b) and its minimum value at the left-
most peiat A of the spectrum of (A,b), whether or not these are

eigenvaluees of A.

18



From the considerations following (3.3), we see that the maximizing
x 1s unique 1if '\R € G. If, however, AR is not in G and 1s an
eigenvalue of A of multiplicity m, then the maximizing x include all

points of un (m-1)-sphere of nonzero radius, whose center is not at 6

when b £ 9.
The above result about AR and AL for the case where some Kibi =0
can be obtained by continuity from the case where no Xibi = 0. It is not

clear that we could use continuity to deduce the nature of the maximizing

and minimizing vectors, for multiple roots.

4L, The main result.

In Secs. 2 and 3 we have proved our result:

(L.2) Theorem. Given A, hermitian with eigenvalues [Xi}, and b,

arbitrary, define {bi] as in (1.3). Theu the spectrum of (A,b)

consists of all real A such that

2 2
no Ay ]bi]

g(r) = 3 ——> =1 (0/0=0;1/0 =w) ,
1=l A =M

together with each eigenvalue \ ~ of A for which g(\y) < 1.

For each A in the spectrum with g(\) =1, a unique xk is

found by solving (1.7, 1.8). For each A in the spectrum with g(\) < 1,

there exists an (m-1)-sphere of o satisfying (1.7, 1.8), where

m = card {XJ: XJ = kk].

19



Each xk so found renders ®(x) stationary on S. Let

= . 3 = mi . .
/‘? max{A : A € spectrum}; ;‘l_eg /\L min{A : A € spectrum}. Let Xmin
=any x ; let X oy = 80V X - Then o(xmin) minimizes ®(x) on S,

and ®(x_ ) maximizes ®(x) on S.
- — mx_—— ——

5. The number of points in the spectrum.

As we noted in Sec. 2, if A 1s of order n, then the spectrum of
(A,b) contains anywhere from 2 to 2n real numbers. When does it have
the full amount 2n? If any xibi = 0, then the discussion of Sec. 3
showed that the spectrum necessarily has fewer than 2n points. So we
are limited to the case where all Xibi # 0. But then, as shown in Sec.
2, we know that the spectrum is the intersection of the graph of

2 2
no A o, |

(5.1) o= —
121 | -n|

for real A with the line . = 1.

The graph of (5.1) for real X\ consists of n + 1 branches between
the n vertical asymptotes A = \. (1=1,...,n). Since u >0 for all
A, and u -0 as A -+ and A -+ - », the right-most and left-most
branches necessarily cut u = 1. The spectrum has the full number 2n of
points if and only if each of the n - 2 interior branches of the curve
reaches its minimum with 4 < 1. For general n a condition for this is

probably too complicated to derive. For n -2, however, we can answer

the question, as follows:

20



(5.2) Theorem.

(5.3) let n=2, and assume A 1is in diagonal form with Xl < k2.

If the spectrum of (A,b) consists of 4 distinct numbers, then

(5.4) 0 < |bjr | and O < oA |
and also

< e 2
G lblxl|3 + |b2)\2|3 < (x2-xl)3

(5.6) Conversely, if (5.4) and (5.5) hold, then the spectrum of

(A,b) consists of L4 distinct numbers.

. E 2 N
Proof of (5.3). Let ay = lxibil (i=1,2). If either a, or a,

vere zero, then the development in Sec. 3 shows that the spectrum would con-
sists of st most 3 poin.s. Hence a, > O and a, >0; 1i.e., (5.4) holds.
Let M = (82/81)1/3. Now the development in Sec. 2 chows that the

spectrum of (A,b) consists precisely of the real roots A of the equation

(5.7) (A) = + =
: (x-xl)‘2 (x=) @

3ince (%.7) has 4 real roots, we know that two roots must lie in the internal

(xl,xg). Now let . be the unique real root of

-2a1 2&2

- =0
3 3

g'(\) =

21



Then, because there are two roots of (5.7) in (xl,xe),

(5.8) glp) <1

We now show that (5.8) implies (5.4).

Solving g'(n) = O shows that

“H
-%x- =4t ¢
|
whence
1
S W e (=)
M
Aot H =T (X2'Xl>
Hence
al(l+M)2 82(1+M)2
8(u) +
2 ) 2
{ - =
(A xl) M?(x2 xl)

(hy-rp) M
e
(l+M)2 a% 1 1
) 3, .3
NN 178
2 1
1 1
(; Hﬁ)z 101
b ( 3, .3
(*2‘*1)2 53
1 1
SR
(a.4)
" 2
(ry-, )



Thus g/p) <1 implies

wi o

1
+ad < (Aiohy)
2 2 1 2

= Wil

(5.9) 8

which implies (5.5). Thus (5.3) is proved.

Proof of (5.6). We have a, >0, 3,>0, and (5.9). The above steps

g(n) <1, whence there are L real roots of g{u) = 1.

are reversable, and so

Thus theorem (5.2) is completely proved.

Condition (5.4) says that neither A, nor X\, is 0, and that the
point b = (bl’be) does not lie on an ax’s or the (xl,xe)-plane. Condition
(5.5) requires that (bl’b2) be inside 2 curve I which depends only on
the ratio ke/xl. If k2/kl =2, for examplie, the curve I 1is

|bl|2/3 + [2b2|2/3 = 1.

Figure 1
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In Figure 1 the number of points in the spectrum of (A,b) 1is
indicated for different b 1in the first quadrant by integers in circles.

£ v /A1 >2, the curve T includes values |b | > 1. But

|*,/A | > 1 implies thai, on I, |b | < 1.

6. Geometrical interpretation.

The surfaces &(x) = k are similar conic surfaces with center b 1in
the euclidean n-space f;l of vectors x. The maximum problem (1.2) is to
find the conic surface with maximum k which touches the constraint sur-
face S, the unit sphere in fjn. The rotation of A to diagonal form is
a rotation of 6%1 (leaving S dinvariant, of course) which causes principal
axes of the conic surfaces to coinvide with the axes of gn'

The vector Ax - b 1is half the gradient of ®(x), and x 1s the
radius vector. Condition (1.5) merely states that at a point where ®(x)
is stationary, for x on S, the surface &(x) = k 1is tangent to S.

Fix x at a solution of (1.5), and let t be real. If the constant
» of (1.5) is positive, the value of &(tx) increases as t 1increases
from 1; if X\ 1is negative, &®(tx) decreases as t increases from 1.

The main result of Secs. 2 and 3 is that the maxi-um problem of Sec.

1 is solved for the largest value of X\ satisfying (1.5), f¢ x on S.
The authors see no obvious geometrical reason why this should be so.
A

If all b.A, # 0, then Sec. 2 shows that any vector x = x which

makes ®(x) stationary on S is uniquely determined by AX.

Figure 2 shows, for n =2 and O < Xl < K2’ a case wnere there are
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o

it

L distinct points of tangency of an ellipse with the unit circle. All

ellipses have center b and common value of xe/xl > 2. Since

Figure 2

xg/xl > 2, 1t was shown in Sec. 5 that 4 distinct tangencies were possible

for certain b outside S.

Whenever some b, = O, then, provided that (3.2) holds with the

inequality sign <, we get more than one x

belonging to a given A. That

is illustrated in Fig. 3, where n =2 and k = 1. What is not obvious to
the authors 1s a geometrical reason why necessarily \ = Xk in this case.

o

another x

Figure 3
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T. A constrained least squares problem.

Let C bean mxn matrix (m>n) and f an m-vector, both
over the complex field. We wish to study the set of complex n-vectors y

of euclidean length |ly| = (yHy)l/e = 1 ‘such that
(7.1) lcy-£IF = (cy-£)8(cy-£) = min.
The constraint is

(1.2) ylf =¥ =2

Because euclidean length is invariant under unitary transformations,
it is useful to rotate coordinates in both the space of y and the space

of f. To do this, let r = rank(C), and write
(7.3) ¢ =uv ,

where U, V are unitary, and vhere the only non-zero elements of D are
the first r elements of the leading diagonal, which we may arrange so

that

Now let V- =x and Uf = g. Then
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v Cy-f=UHDVy-U'HUf

) = v (Dx-g)

" Hence

= ley-£1F = fox-g|®

= (7.) ] , B .
- ) 1§1 1ay%; 8 1+ 1=§+1 e

The problem (7.1, 7.2) is to minimize

I

r
> 2 2
ld,x,-g,|° = L d7 Ix,-8,/d,]
jza i1 = s i i 21774

subject to the constraint

S 2
. (7.5) ) Ix |7 =1
i=1
- (
0 (1 =1,2,...,n-r)
Now let Xi = <
d2
k n+l-i (i = n-r+l,-n.’n) »
(
0 (i =1,2, ,n-r)
and let bi E <
8n+l-
dn 1-1 (1 = n-r+l,...,n)
\ “n+l-1

We then have changed our problem to one of minimizing

eT




n

4
(7.6) A IX -b l ’

subject to the constraint (7.5), where

= = s = ° s e )
(7.7) © Xl Xn-r < Xn-r+l = S M
This is precisely the minimum problem (1.2) of Sec. 1. The special role of
the n - r zero eigenvalues of CHC becomes evident.
Thus the general problem of the least-squares solution of Cy =7f°

with constraint (7.2) is a special case of our minimum problem (1.2).

8. Lemmas from complex function theory.

In this final section we state and prove three lemmas relating partial
derivatives of certain regular analytic functions of several complex
variables to gradierts of real-valued functions of vector variables. This
technique is common in the study of second-order partial differential
equations; for example, see (9.1). We include the material mainly to
keep ocur treatment self-contained, and partly to call explicit attention to
the fact that the Lagrange multipli=r XA must be real even though complex

variables are used.

(8.1) Lemma. Let ®(\,u) be a regular analytic function of two complex

variables A, u such that, for all real x, y,
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(8.2) F(x,y) = ®(x+1y, x-1y)

is real-valued. Then

oF OF o0
BN T
ox % S A=x+iy
pu=x-1y
Proof. Differentiate (8.2):
o od o
(8.3) 3§=a-l+$'l ’
OF _o¢ 0
(814) &—a-i-a i

Add (8.3) to (8.4) x 1:

(8.5) Lemma. Let F and G be real-valued differen:iable functions of real

variables xl,yl,...,xn,yn. For abbreviation, let 2, = Xy + iyk, and let

z = (Zl""’zn)' Then, for F(z) to be stationary at z = a with respect

to all neighboring 2z such that G(z) = G(a), it is necessary and

sufficient that there exlst a real Lagrange constant A such that

OF OF oG 3G \ _
(8'6) Bq(*‘igy—k-)s(ax—kﬁ'isﬁ)—o
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Proof. Condition (8.6) is nothing but the usual condition that the

real gradient vector

(ap OF OF O  JF aF)
axl ayi ak2 6}2 3;; 3§;

be parallel to the vector

( oG oG oG 6 oG oG
:a’yl)axe,v&‘?y )szyay_n

The use of tne complex variables Zp is unessential.
Given any vector z = (zl,...,zn), we let 2z denote the vector of

complex conjugates (El,...,zn).

(8.7) Lemma. Let ¢(z,w) and V¥(z,w) be regular analytic functions of the

two complex vector variables z = (zl, 2y ) and w = (wl ,wn) with

the property that ®(z,z) and V¥(z,z) are real. Then &(z,z) is

stationary at z = a with respect to all z such that y(z,z) = y(a,a),

if and only if there exists a real Lagrange constant A such that

Ay
-\ 5= = 0
Ew— S

for z =a and w=4a and k = 1,2,...,n.

Proof. Let z =x + iy. Then &(z,z) = F(x,y), v(z,z) = G(x,y). By

lemma 8.1 applied to each variable 2, 5
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ftor =z =a, w=4a, and k =1,...,n.

Then lemma (8.7) follows from lemma (8.5) .
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